Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3689322.v1

ABSTRACT

The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of herd immunity. Here, we isolate spike binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. 28 potent antibodies were isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5 SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called ‘FLip’mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.

2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2684849.v1

ABSTRACT

Commercially developed monoclonal antibodies (mAb) have been effective in the prevention or treatment of SARS-CoV-2 infection1-3 but the rapid antigenic evolution of the Omicron sub-lineages has reduced their activity4-8 and they are no longer licensed for use in many countries. Here, we isolate spike binding monoclonal antibodies from vaccinees who suffered vaccine break-through infections with Omicron sublineages BA.4/5. We find that it is possible for antibodies targeting highly mutated regions to recover broad activity through allosteric effects (mAb BA.4/5-35) and characterise a pair of potent mAbs with extremely broad neutralization against current and historical SARS-CoV-2 variants. One, mAb BA.4/5-2, binds at the back of the left shoulder of the receptor binding domain (RBD) in an area which has resisted mutational change to date. The second, mAb BA.4/5-5, binds a conserved epitope in sub-domain 1 (SD1). The isolation of this pair of antibodies with non-overlapping epitopes shows that potent and extremely broadly neutralizing antibodies are still generated following infection and SD1 directed mAbs may increase the resilience of mAb therapeutics/prophylactics against SARS-CoV-2.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.24.22282715

ABSTRACT

How human genetic variation contributes to vaccine immunogenicity and effectiveness is unclear, particularly in infants from Africa. We undertook genome-wide association analyses of eight vaccine antibody responses in 2,499 infants from three African countries and identified significant associations across the human leukocyte antigen (HLA) locus for five antigens spanning pertussis, diphtheria and hepatitis B vaccines. Using high-resolution HLA typing in 1,706 individuals from 11 African populations we constructed a continental imputation resource to fine-map signals of association across the class II HLA observing genetic variation explaining up to 10% of the observed variance in antibody responses. Using follicular helper T-cell assays, in silico binding, and immune cell eQTL datasets we find evidence of HLA-DRB1 expression correlating with serological response and inferred protection from pertussis following vaccination. This work improves our understanding of molecular mechanisms underlying HLA associations that should support vaccine design and development across Africa with wider global relevance. Teaser High-resolution typing of HLA diversity provides mechanistic insights into differential potency and inferred effectiveness of vaccines across Africa.


Subject(s)
Hepatitis B
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.04.22281942

ABSTRACT

Introduction ERAP2 is an aminopeptidase involved in immunological antigen presentation. Genotype data in human samples from before and after the Black Death, an epidemic due to Yersinia pestis , have marked changes in population allele frequency of the common single nucleotide polymorphism (SNP) rs2549794. This SNP in strong linkage disequilibrium with a key splicing SNP in ERAP2 (rs2248374) and this suggests that variation at ERAP2 may be relevant for protection from infection. rs2549794 is also associated with Crohn’s disease and findings imply balancing selection between infection and autoimmune disease at this locus. There have been no large-scale prospective case-control studies of variation at ERAP2 and infection. Methods This study aimed to explore the association between variation at ERAP2 and a) infection, b) autoimmune disease, and c) parental longevity as a proxy for lifespan. Genome Wide Association Studies (GWAS) of these outcomes were identified in contemporary cohorts (UK Biobank, FinnGen, and GenOMICC). Effect estimates were extracted for rs2549794 and rs2248374. Additionally, cis expression and protein quantitative trait loci (QTLs) for ERAP2 were used in Mendelian randomisation analyses. Results Across all cohorts, the T allele (minor allele frequency of 0.4-0.5) of rs2549794 showed evidence of association with respiratory infection (odds ratio; OR for pneumonia 1.03; 95% CI 1.01-1.05; p = 0.014). Effect estimates were larger in bacterial rather than viral infection and larger for more severe phenotypes (OR for critical care admission with pneumonia 1.08; 95% CI 1.02-1.14, p = 0.008, OR for death from pneumonia 1.07; 95% CI 1.01-1.12; p = 0.014). In contrast, opposing effects were identified for Crohn’s disease (OR 0.86; 95% CI 0.82-0.90, p = 8.6 × 10 −9 ) and type 1 diabetes (OR 0.95; 95% CI 0.90-0.99, p = 0.02). No strong evidence for association was identified for sepsis. Carriage of the T allele was associated with increased age of parental death (beta in Z-scored years across both parents age at death 0.01, 95% CI 0.004-0.017, p = 0.002). Similar results were identified for rs2248374. In Mendelian randomisation analyses, increasing transcription or protein levels of ERAP2 were strongly associated with protection from respiratory infection, with opposing effects identified on Crohn’s disease and type 1 diabetes. Increased expression of ERAP2 was associated with reduced parental longevity. Conclusions Variation at ERAP2 is associated with severe respiratory infection in modern societies, with an opposing association with Crohn’s disease and type 1 diabetes. These data support the hypothesis that changes in allele frequencies in ERAP2 observed at the time of the Black Death reflect protection from infection, and suggest ongoing balancing selection at this locus driven by autoimmune and infectious disease

5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1317569.v1

ABSTRACT

Little is known of the role of cytotoxic CD4+ T-cells in the control of viral replication. Here, we investigate CD4+ T-cell responses to three dominant SARS-CoV-2 epitopes and evaluate antiviral activity, including cytotoxicity and antiviral cytokine production. Diverse T cell receptor (TCR) usage including public TCRs were identified; surprisingly, cytotoxic CD4+ T-cells were found to have signalling and cytotoxic pathways distinct from classical CD8+ T-cells, with increased expression of chemokines and tissue homing receptors promoting migration. We show the presence of cytolytic CD4+ T-cells during primary infection associates with COVID-19 disease severity. Robust immune memory 6-9 months post-infection or vaccination provides CD4+ T-cells with potent antiviral activity. Our data support a model where CD4+ killer cells drive immunopathogenesis during primary infection and CD4+ memory responses are protective during secondary infection. Our study highlights the unique features of cytotoxic CD4+ T-cells that use distinct functional pathways, providing preventative and therapeutic opportunities.


Subject(s)
COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-734011.v1

ABSTRACT

NP 105-113 -B*07:02 specific CD8 + T-cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP 105-113 -B*07:02 specific T-cell clones and single cell sequencing were performed concurrently, with functional avidity and anti-viral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with TCR usage, transcriptome signature, and disease severity (acute N=77, convalescent N=52). We demonstrated a beneficial association of NP 105-113 -B*07:02 specific T-cells in COVID-19 disease progression, linked with expansion of T-cell precursors, high functional avidity and anti-viral effector function. Broad immune memory pools were narrowed post-infection but NP 105-113 -B*07:02 specific T-cells were maintained 6 months after infection with preserved anti-viral efficacy to the SARS-CoV-2 Victoria strain, as well as new Alpha, Beta and Gamma variants. Our data shows that NP 105-113 -B*07:02 specific T-cell responses associate with mild disease and high anti-viral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
COVID-19
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3766286

ABSTRACT

Background: Emergency hospital admissions for infection often lack microbiological diagnostic certainty. Novel approaches to discriminate likelihood of bacterial and viral infections are required to support antimicrobial prescribing decisions and infection control practice. We sought to derive and validate a blood transcriptional signature to differentiate bacterial infections from viral infections including COVID-19.Methods: Blood RNA sequencing was performed on a discovery cohort of adults attending the Emergency Department with confirmed bacteraemia or viral infection. Differentially expressed host genes were subjected to feature selection to derive the most parsimonious discriminating signature. RT-qPCR validation of the signature was then performed in a prospective cohort of patients presenting with undifferentiated fever and a second case-control cohort of patients with bacteraemia or COVID-19.Findings: A 3-gene transcript signature was derived from the discovery cohort of 56 definite bacterial and 27 viral infection cases. In the validation cohort, the signature differentiated bacterial and viral infections with an area under receiver operating characteristic curve (AUC) of 0.976 (95% CI: 0.919-1.000), sensitivity 97.3% and specificity of 100%. The AUC for C-reactive protein and leucocyte count was 0.833 (95% CI: 0.694-0.944) and 0.938 (95% CI: 0.840-0.986) respectively. In the second validation analysis the signature discriminated 34 SARS-CoV-2 positive COVID-19 from 35 bacterial infections with AUC of 0.953 (95% CI: 0.893-0.992), sensitivity 88.6% and specificity of 94.1%.Interpretation: This novel 3-gene signature discriminates viral infections including COVID-19 from bacterial sepsis in adults, outperforming both leucocyte count and CRP, thus potentially providing significant clinical utility in managing acute presentations with infection.Funding Statement: Work in this study was funded by the NIHR Imperial Biomedical Research Centre, the Medical Research Council, the Wellcome Trust and the European Union FP7 (EC-GA 279185) (EUCLIDS).Declaration of Interests: None of the authors have any relevant interest to declare. Ethics Approval Statement: Ethical approval was obtained to take deferred consent from patients from whom an RNA specimen had been collected (or from next of kin or nominated consultee) (REC references 14/SC/0008 and 19/SC/0116).


Subject(s)
Neurologic Manifestations , Fever , Sepsis , Bacterial Infections , Emergencies , Eye Infections, Viral , COVID-19 , Hemoglobin SC Disease
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-91353.v2

ABSTRACT

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test (HAT) has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of ~0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL